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This paper is concerned with interpolation by multidimensional periodic splines
associated with certain elliptic differential operators. We develop an a priori error
estimate for the solution obtained by spline interpolation. Finally we investigate the
problem of uniform approximation by multidimensional periodic splines (as basis
funnctions ). © 1988 Academic Press. Inc.

INTRODUCTION

Let gl, ..., gq be a basis of a non-degenerate lattice A in Euclidean space
IRq. Denote by g; the half-open parallelotope consisting of all points x E IRq
of the form

q

X= L fig
i

i= 1

(0.1 )

(-1/2 ~ f i < 1/2, i = 1, ..., q). ff is called the fundamental cell of the lattice
A. The volume of this cell is

II ff II = Idet(gI, ..., gq)l· (0.2)

If A is a non-degenerate lattice in IRq, then the set of all hE IRq such that gh
is an integer for all g E A is again a lattice called the inverse lattice A-I.
Obviously, (A-1)-I=A (cf. [1, 12]).

The functions <Ph' h EA-I, defined by

for all g EA. An elementary

1
<Ph(X) = ~ e(hx),

yllffll

are A-periodic, i.e., <Ph(X+g) = <Ph(X)
calculation yields

(-Ax - Ah) <Ph(X) = 0,
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e(hx) = e21ti(hX), (0.3)

(0.4 )
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(L1: Laplace-operator). The functions ~h' hEA- 1
, are the only twice con­

tinuously differentiable eigenfunctions corresponding to the eigenvalues Ah

of the Laplace-operator for the "boundary condition" of A-periodicity. The
system {~h Ih EA -I} is orthonormal in the sense of the L 2-inner product

h=h'

h i=h'
(0.5)

(dV: volume element). The correspondence f+-+ (f, ~h)L2(F) is a unitary
mapping of L2(~) onto P(A- 1

) (cf. [17]).
Let p be a non-negative real. Then there only exist a finite number

m = mp of non-negative reals , ~ p with

L 1 >0.
Ihl = r
hEA-l

(0.6)

Denote all these non-negative reals ~ p satisfying (0.6) by '1' ... , m' We let

m

M=Mp = L 1 = L L 1.
Ih I <;; p j = 1 Ih I = rj
heA-l hEA-l

(0.7)

M is the total number of lattice points hE A -Ion and inside the sphere
around the origin with radius p. A;VI=A;,1 denotes a set of N~M
elements hE A -I containing all hE A -I with Ih I~ p as subset. Clearly, we
have

(0.8)

M is the dimension of the space f!jJ =.9'p of all linear combinations of the
functions ~h' hE A;/, in IRq

(0.9)

Consider a .9'-unisolvent set X M = {Xh E~ Ih E AMI }, i.e., a set of points
Xh E~ such that the rank of the (M, M)-matrix

(0.10)

is equal to M (cf. [10]). Then we are able to interpolate a given set
{Yh ECI h EA -:\f} by a unique PE.9': P(Xh) = Yh' hEAM1

• However, for any
set X N = {XhE~lhEA;VI} containing X M as a proper subset (so that
N> M), this interpolation property cannot be guaranteed in general. In
this case we are led in a canonical way to a spline interpolation problem,
namely the following. We consider the differential operator

(0.11)
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with
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(0.12 )

where (X = ((XI' ••• , (Xm) is a multiindex, i.e., an m-tuple of positive integers
(XI' •••, (Xm' Hence, [(X]:= (XI + ... + (Xm ~ m. The kernel of 8~ is the linear
space r!J.

Within the (Sobolev-like) space Yf of A-periodic functions U with
square-integrable derivatives 8~/2U= (8")1/2 U we look for the solution SN
of the minimization problem

f 18"/2SN (XW dV = inf f 18~/2 U(xW dV
~ VEJN ~

in the set ,IN of all Yf-interpolants to the given data

(0.13)

(0.14)

This procedure is reasonable because it gives an interpolant which is as
close to being a polynomial P E r!J as can be achieved for the N data. In
addition, the spline interpolant is the "smoothest" in the sense of the
problem (0.13), (0.14), thereby avoiding wild oscillations in the interpolant.
Moreover, the previous case when N = M also is included since the uni­
quely defined polynomial in r!J is obviously the solution of the minimation
problem (0.13), (0.14).

In this paper we are concerned with the problem of interpolating mul­
tidimensional periodic functions by periodic splines and developing an a
priori error bound for the approximation. The contents of the paper are
organized as follows: in the first section the structure of the (Sobolev-like)
space Yf is discussed in more detail. In the second section we deal with the
interpolation problem using multidimensional periodic splines. By analogy
with the approach known from surface spline theory (cf. [13]) the inter­
polation process can be made surprisingly simple and reasonably efficient
for numerical purposes. The third section states and proves an a priori
estimate in problems of uniform approximation of "Yf-smooth" functions
by periodic splines interpolating at prescribed knots. Our paper ends with
some remarks about uniform approximation of continuous, A-periodic
functions by splines. It is shown that any continuous, A-periodic function
in IRq can be approximated uniformly to any given accuracy by A-periodic
splines in such a way that the approximation error vanishes at a prescribed
finite set of knots (see, in comparison, e.g. [11]).

The periodic splines discussed here turn out to be multidimensional
generalizations of the periodic splines on the circle (cf. [15] for the classical
approach, [16] and the references therein for recent developments) and
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natural analogues to the splines on the sphere (cr. [4, 5, 6, 8, 19]). Our
spline concept is based on the (iterated) Laplace-operator and on arbitrary
(non-degenerate) lattices. Therefore all spline representations are included
which are based on (iterations of) arbitrary second order elliptic differential
operators with constant coefficients.

1. THE SPACE .Yt

Let .Yt be the linear space of all A-periodic distributions (Le., A-periodic,
continuous linear functionals on the space cff of A-periodic infinitely
differentiable functions in IRq, provided with the canonical topology) for
which O~/2U (in the distributional sense) is square-integrable on ~

(1.1 )

it always being understood that [IX] > qj2. .Yt is naturally equipped with
the semi-inner product (', . ).Jt' corresponding to the semi-norm

(1.2)

where O~/2 is to be interpreted in the distributional sense. The kernel of this
(Sobolev-like) semi-norm 1·1.Jt' is the linear space &>.

By proceeding essentially as explained in [13] the following can be
proved (see also [2]).

THEOREM 1. The semi-normed space .Yt, defined by (1.1) and (1.2), is a
functional semi-Hilbert subspace of the space CA of A-periodic, continuous
functions in IRq.

Consider a &>-unisolvent set XM= {Xh E~ Ih E AMI}. Then there exists in
&> a unique basis {Bh Ih E AMI} given by

such that

Bh(x) = I q,iPh'(X),
h'EA.\{'

(1.3)

(1.4)

For every U E.Yt, the unique &>-interpolant pU of U on the &>-unisolvent
set X M under consideration is given by the "Lagrange formula"

640/55/1-8

pU = I U(x h ) Bh ·

hE A.\{'

(1.5)



108 WILLI FREEDEN

The mapping p: Yf --+ Yf is a continuous linear projector of Yf c CA onto
r!J>. Hence, p determines the following direct sum decomposition

(1.6)

where

(1.7)

That means that any U E Yf can be represented uniquely in the form
U = pU + 0, 0 E:If. The space :If, as defined by (1.7) equipped with the
inner product corresponding to (1.2), is a functional Hilbert space (it is
indeed isometrically isomorphic to Yf).

Since :If is a functional Hilbert space of A-periodic, continuous
functions, for each (fixed) YE~, the evaluation function bv : 0--+ O(y) on
:If is bounded. That is, by can be regarded as the Dirac "measure at the
point Y E~, and the following representation formula in :If holds true

O(y) = <0, by) = (0, K~Lr, oE:If, (1.8 )

where K~ E:If is the Riesz-representer of by and <" .) denotes as usual the
duality bracket between dual topological vector spaces. Consequently, for
all t/J E Iff, we have

(1.9 )

On the other hand it follows for all t/J E Iff that

t/J(y)-pt/J(y) = <~, Mby _ L Bh(y) Mb
xh

), (1.10)
hEA M'

where

Mby= by - L ~h(Y) ~h'
hEAM'

( 1.11)

By comparison of (1.9) and (1.10) we see that K~ satisfies the distributional
equation

a~K~ = Mb v- L Bh(y) Mb xh
" "hE AM'

in :If c Iff'. The distributional equation

(1.12 )

(1.13)
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is solvable in :tf uniquely apart from an additive element of & by Green's
(lattice) function of the operator 0" (cf. [7, 9])

G;(x)=G"(x,y)= L IAhl-l<ph(Y)<Ph(X),
h~AM'

where Ah, hE A;/, is given by

(1.14)

if 2([IX]-[P])~q,qeven

otherwise

and the series on the right hand side of (1.14) is extended over all hE A -I

for which h rt A i/. In fact, by techniques known in potential theory (cf.,
e.g., [9]) it can be shown that

oPG"(x, y)

={O(!X- YI2(["]-[P])-Qln Ix-yl)
O( I x _ Y 12 ( [,,] - [P]) - Q

(1.16 )

provided that P= ({31' ..., Pm) is a multiindex of non-negative integers
PI' ..., Pm with Pi ~ lXi' j = 1, ..., m and [P] < [IX].

Apart from an additive element of &, the distribution H; E:tf given by

H~(x)=H"(x,y)=G"(x,y)- L Bh(y) G"(x, Xh) (1.17)
- hEAMI

is the unique solution of the distributional equation

o"H;= M Dy _ L Bh(y) M Dxh '
hEAM'

But this means that K; E:If given by

K;(x) = K"(x, y)

= G"(x, y) - L Bh(y) G"(x, x h)
hEAMI

(1.18)

- L G"(xh, y) Bh(x) + L L Bh(y) G"(xh" x h) Bh,(x)
hEAM' hEAM' h'EAM'

(1.19)

is the unique element in :If satisfying (1.12).
Summarizing our results we therefore obtain
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THEOREM 2. The space .if, defined by (1.7) with norm (1.2), is a
functional Hilbert subspace of CA' K"-(.,.), as defined by (1.19), is the
reproducing kernel for .if, i.e., (i) for each fixed yElRq, K"-(·,y) is in.if,
(ii) for every function U E.if and for every y E IRq, the reproducing property

U(y) =f 0"-/2 U(x) 0"-/2K"-(x, y) dV(x)
.cT

holds.

2. SPLINE INTERPOLATION

A set X N = {Xh E ff Ih E ANI} of N ~ M points Xh E ff is called a fJ>­
admissible set if it contains a fJ>-unisolvent system X M = {xhE ff Ih E AMI }

as subset.

DEFINITION 1. Given a &'-admissible system X N = {xh E ff Ih E ANI },
then any function S E:Yf of the form

S(X) = L: ahBh(x) + L: ahK"(x, x h),
hEA,,' hEA,v'-A,,'

(2.1 )

is called a A-periodic fJ>-spline in :Yf relative to X N' (For N = M, S reduces
to the first sum of the right hand side of (2.1).)

The space 9' = 9'~(XN) of all A-periodic fJ>-splines in :Yf relative to X N
is an N-dimensional linear subspace of :Yf containing the class fJ>.

THEOREM 3. Any S E 9' can be represented in the form

S(x) = P(x) + L: bhG"-(x, Xh),
hEA,v'

(2.2)

where the coefficients bhE iC have to satisfy the linear equations

0= L: bhrPh'(xh),
hEA,v'

(2.3 )

The proof follows easily from the definition of A-periodic fJ>-splines by
straightforward calculation. Therefore it is obvious that the A-periodic
splines discussed here form multidimensional generalizations of the one­
dimensional trigonometric splines due to Schoenberg [15].

Suppose now that there are given N prescribed data points (Xh' 'Yh),
hE ANI, corresponding to a fJ>-admissible system X N = {Xh E ff Ih E ANI }.
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We consider the problem of finding the smoothest function in the set

111

of all :Yf-interpolants to the data, where by "smoothest" we mean that the
semi-norm 1·I.Jf is minimized in :Yf.

For that purpose we need some preliminaries formulated in the following
lemmata.

LEMMA t. If U E /N and S E!/, then

(U, S).}fP = hErf-r' ah[Yh - h'~-' Yh.Bh'(Xh)}
N M M

LEMMA 2. There exists a unique S E!/ 1\ $v. Denote this spline briefly
by SN'

Proof Any spline S E!/ of the form (2.1) contains a total of N coef­
ficients ahEiC, hEAiV1. Thus, S(Xh')=Yh" h'EAiV1, is equivalent to the
linear equations

L ahK~(xh"Xh)=Yh'- L YhBh(Xh')'
hEAN'-AM' hEA M'

(2.4)

The coefficient matrix is (Hermitian) symmetric and positive definite as
Gram matrix of a sequence of linearly independent elements in :Yf. Hence,
the linear system (2.4) is uniquely solvable. I

The solution can be obtained by standard algorithms based on the idea
of Cholesky's factorization (cr., e.g., [3, 13]).

LEMMA 3. If U E /N' then

t Ia~/2U(xW dV = t Ia~/2SN(XW dV +t j a~/2(SN(X) - U(X)j2 dV.

THEOREM 4. The interpolation problem

f Ia~/2SN(X)1 dV = inf f Ia~/2U(xW dV
F UE/N F

is well posed in the sense that its solution exists, is unique, and depends
continuously on the data Yh' hE A iV 1 .
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3. ERROR ESTIMATE

For any ,?}'-admissible set X N = {Xh Eg; Ih E ANI} there exists the
so-called X N-width eN defined by

eN=max (min IX-Xhl).
XEff hEA';;'

(3.1)

THEOREM 5. Suppose that r E [0, 1], [a] > (q + 2r)/2, and FE:if. Let
X N = {xhE g; Ih E ANI} be a ,?}'-admissible system. Denote by S~ E:if the
uniquely determined solution of the interpolation problem

f la~/2S~(xWdV= infJ la~/2U(xWdV,
ff UE~ ~

where

f ~ = {U E:if IU(Xh) = F(xh), hE ANI}.

Then

where A,. ~ is given by

Proof For any given x Eg;, there exists a point xkEg;, k E ANI, with
IX-Xkl ~eN' On account of SN(Xk ) = F(Xk) it is easy to see that

S~(X) - F(x) = S~(x) - S~(xd + F(xd - F(x). (3.2)

Thus, by the triangle inequality, we have

IS~(x) - F(x)1 ~ 1S~(x) - S~(xk)1 + IF(xd - I(x )1. (3.3)

By virtue of Theorem 2 we obtain
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Applying the Schwarz inequality we find

where we have introduced the abbreviation

113

(3.5)

/(<X(X, Xk) = f IO<x/2[I(a(y, x) - K<X(y, xdJI 2 dV(y). (3.6)
y

s~ is the smoothest Jf'-interpolant, i.e.,

f IO<x/2 S~(yW dV ~ f Io<X/2F(yW dV.
y y

Hence, in view of (3.3), we are able to deduce that

( )
I~

1S~(x) - F(x)1 ~ 21 /(<x(x, xdl l
/
2 LIo<X/2F(y)1 2dV .

Elementary calculations yield

- L [Bh(x)-Bh(xdJ[G<X(X,Xh)-G<X(XbXh)]
hEA"M'

- L [G<X(Xh' x) - G<X(Xh' xd][Bh(x) - Bh(Xk)]
hEA"M

1

(3.7)

(3.8 )

+ L L [Bh(x) - Bh(Xk)] G<X(Xh" xh)[Bh,(x) - Bh,(Xk)].
h'EA"M1 hEA"M1

(3.9)

By use of standard arguments we are able to show that the relations

(3.10)

resp.

(3.11 )
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hold for all hE A -1 and for any two x, y E ~q. Hence, it follows that

2n
I(,6h(X) - (,6h(y)1 ~ ;;;-;:;;;-rj (I h II x - y IY

v 119'11
(3.12)

holds for all r E [0, 1], hE A -1, and any two x, y E ~q. According to our
assumptions we see that 1hi' IA~ 1- 1/2 E p(A-I). Hence, by use of (3.10),
(3.12) we get from (3.9)

(3.13)

Note that A"" as defined above is independent on N and FE Yf.
Consequently, it follows that

(3.14)

holds uniformly with respect to all x E 9'. In view of the A-periodicity of F,
S~, this implies the proof of Theorem 5. I

4. UNIFORM ApPROXIMATION IN CA

As is well known (cr., e.g., [17]), the set of all finite linear combinations
of the functins (,6 h, h E A-I, is dense in the space CA' Therefore, Yf is a
dense subset of CA too. An extended version of Helly's theorem due to
Yamabe [18] states that, for any fEC A and any (&'I-admissible) system
X N= {XhE9'\hEAN1}, there exists an element FEYf in an e-neigh­
bourhood of f such that f(Xh) = F(Xh) for all hE ANI. On the other hand,
according to Theorem 4, any FE Yf can be approximated uniformly to any
given accuracy using spline interpolation assuming the widths 8 N tend to
zero as N --+ 00. Combining these results we finally arrive at the following

THEOREM 6. Suppose that X No is a prescribed &>-admissible system.
Furthermore, let there be given a sequence (XN) of &>-admissible systems X N
such that X No eXNfor every Nand 8 N --+ °as N --+ 00. Then, to any fE CA

and every e>O, there exist an integer N=N(e) and a spline SE9':'(XN)
such thatf(Xh) = S(xh), hEANol, andsuPxERqlf(x)-S(x)l~e.
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5. A THREE-DIMENSIONAL EXAMPLE

115

As an illustration our spline interpolation method will be described
in more detail for the case that A is the three-dimensional unit lattice Z3
(consisting of all points in 1R 3 having integral coordinates). Then, of ourse,
the inverse lattice of Z3 coincides with Z3 itself. In addition, we simply
choose p = 0 so that Zit only consists of the origin.

For given data points (Xh, F(Xh))' h E Z~, we discuss the interpolation
problem

f I( _A)~/2 S~(xW dV = inf f I( _A)~/2 U(xW dV, (5.1)
y UE$~ Y

it being understood as above that [IX] = IX I > 3/2. Then the uniquely deter­
mined solution S~ E Je is given by the expression

S~(X) = F(xo) + L ah[G~(x, Xh) - 2G~(x, xo) + G~(xo, xo)],
hEZ~- {OJ

where the coefficients ah E C have to satisfy the linear equations

L ah[G~(xh" xh) - 2G~(Xh" xo) + G~(xo, xo)]
hEZ~- {OJ

h'E7L~- {O}.

The lattice sum

(5.2)

can be computed rapidly by a procedure due to B. R. A. Nijboer and
F. W. de Wette [14]. The principle of this method can be easily seen by
rewriting (5.2) formally as follows:

~ _ I e(hx) e(hy) 2

G (x,y)-r( ) L (4 2h2)~1 r(IXI,nh)
IX I Ihl .. O n

hEZ3

(y, r: incomplete gammafunctions). The first series on the right hand side
has a rapid convergence whereas the second series has the same rate of
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convergence as the original sum. By application of the Fourier transform,
however, we are able to convert this series into a rapidly convergent sum

~ 1 [ e(hx) e(hy) 2 n~1

G (x'Y)=(4n2V'r(IXd Ih~O IhI2~, r(IX/>nh )-~
hE zJ

2~1-3/2 " r(3/2 - lXI' nih - (x- yW)]
+n h~J Ih_(x_y)12~1-3 .

The expression in this form holds for x#- y. For the case x = y, the second
summation must be taken over all hE 7L 3 with Ihi#-°and the term
n~I/(IXI - 3/2) must be added.

The a priori estimate (Theorem 5) applied to our special situation reads

sup IS~(x) - F(x)1
XE !R3

assuming that rE(O, 1] and IX I >(3+2r)/2, where (Z3 is the zeta function
given by

(5.4 )

In particular, for r = 1 and F= ¢Jh' Ihi#- 0, we obtain

sup ISt'(x) - ¢Jh(X)! ~ 4n I(zJ(2IX I - 2)1 1
/
2 eN Ih I~l. (5.5)

XE 1R3

In order to get a quantitative impression of the accuracy we finally evaluate
the zeta sum for some different orders:

iX, (zJ(2iX, -2)

3 1.653232 E t 1
4 8.401924 E + 0
5 6.945808 E + 0
6 6.426120E+0
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